Case study: Tannins discovery

While many people know the health benefits and taste impact tannins have on fruits and drinks like tea and wine, no one ever knew how plants put them together — until now. Researchers with UNT’s BioDiscovery Institute (BDI) have made a breakthrough discovery in how the building blocks of tannins multiply.

What?

UNT’s team discovered that the gene leucoanthocyanidin reductase, or LAR, plays an unexpected role in determining how the building blocks of tannins multiply to form long chains. The longer the chain the stronger the plant, but shorter chains can often offer more health benefits to humans.

Who?

UNT biology faculty researchers Chenggang Liu, Xiaoqiang Wang, Vladimir Shulaev and Richard Dixon, director of UNT’s BDI, were recently included in Nature Plants highlighting their recent major discovery.

Approach?

The researchers isolated genes of mutant plants where the LAR gene had been knocked out. They found in those plants, the amount of soluble tannins virtually disappeared and insoluble tannins increased. That’s when they discovered LAR has to do with the length of the tannin chains, not putting the chains together.

Working?

Now the researchers are working to see if they can change tannins in alfalfa in a way that would reduce gas in cows. On top of being better for the cows, it would cut down on a major source of greenhouse gas.

Outcome?

UNT researchers are the first ever to discover how tannins are put together. This can lead to improved health by helping to reduce risks of cardiovascular disease, cancer and Alzheimer’s disease, as well as more research and the creation of healthier and tastier fruits and drinks like wine and tea.